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Rapid Prototyping System

Executive Summary

Rapid prototyping is pursued as a means to develop and validate functional

specifications prior to extensive code development in a large software system.

To achieve a functional prototype execution with moderate development effort

three capabilities are specified: 1) a specification-level language, PSDL,

which minimizes the extent of the design decisions which must be provided by

the prototype developer; 2) a library of reusable software modules, and a

database system to aid in module retrieval and analysis; and 3) a set of

interactive tools, including a system interpreter for debugging purposes, which

aid in the construction and execution of prototyping experiments.

This report analyzes the functionality needed within each of these

capabilities. It provides a design for the prototyping language and its

related support tools. It describes a strategy of component reuse which deals

with generic components. We provide an approach to understanding reusable

modules within the context of an intended application by means of a visual

interpreter which animates module behavior. We describe designs for system

tools which help users cope with complex system design information by means of

p graphical presentations.

The prototyping language uses a dataflow style of presentation to express

precedence relationships between operations. It supports a hierarchical and

object-oriented structuring which is similar to that which is appropriate for

Ada. It supports abstract datatype concepts mixed with conventional Ada data

typing, but shields the user from data space management concerns.

The prototyping support environment is centered around an object-oriented data

* management system which is closely coupled to a workstation display. This

structure is effective for storing and viewing hierarchical compositions of

program graphs, data type definitions, and other design data.

We conclude that the specifications for a prototyping system developed in this

report provide an effective basis for developing such a system.

C..
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Final Scientific Report

g Rapid Prototyping System

1. Introduction

This report covers work done on a joint project with the Honeywell Computer

Sciences Center on RaPIER (Rapid Prototyping to Investigate End-user

Requirements). ISSI was responsible for the technology used to construct

prototype software, with Honeywell performing the remaining system work,

2. including end-user interface, library of reusable modules, and methodology.

This effort was part of a multi-year project to design and build such a system.

The initial contract, reported here, concerned design of the prototype system

design language and software base management system.

This report describes the design of the key components of a prototyping system.

As a design document, its function is to give a detailed discussion of

implementation objectives and to decompose the overall system problem into a

system of subproblems which are more tractable.

1.1 Objectives and Approach

In order to reduce the total cost of developing complex software systems, it

is often desirable to evaluate and validate proposed system functionality

prior to extensive system design and coding. This is to ensure that

proposed system specifications are appropriate to end-user needs, and that

the user interface is properly designed. In addition, prototyping will

often be used to help users better understand their own needs, in the case

where the system involves unfamiliar technology and objectives.

The problem today is that prototype construction requires almost as much

effort as building a final system. For prototyping to become widely

effective it must become truly rapid. This includes not only initial

development of a system but also subsequent modifications as the specified

functionality is adjusted.

This very simple problem statement triggers many possible solution paths,

however, and probably no one technique or approach will provide an effective

2



solution. Rather, an integrated set of tools and techniques will be needed

to reduce prototyping effort to an acceptable level.

Our approach is to rely very heavily on reuse of prior designs, as

encapsulated in reusable software modules. We then hope to provide

significantly improved ease of construction for prototype systems with

innovation in three major areas: system specification, support for reuse,

and prototyping tools.

1.1.1 System Specification Techniques.

We seek to minimize the effort needed to describe the proposed system

functionality in executable semantics. To this end, we propose and

develop a Prototype System Description Language, PSDL. PSDL is a non-

procedural specification-level language which expresses functionality

with a minimum of control and data management decisions needed from the

prototyper. It should be viewed as an interconnection language rather

than a programming language because its principal function is to

interconnect reusable modules.

For an objective of improving readability of system descriptions, PSDL is

given a graphical syntax. To enable it to deal with real-time and

concurrent systems, it is based on a dataflow style of description. This

is a particularly challenging combination of objectives because no prior

widely-used language has achieved such a combination of attributes, and
in particular, an executable semantics for a function-level dataflow

language does not exist (in a form that we find simple enough to be

effective).

1.1.2 Support of Reuse

We seek to provide the prototyper with effective access to previously

debugged specifications/programs. These may be used directly as

,- subsystems, be modified to adjust for new data types and new functions,

or serve as templates for new designs. By their character, modules which

are reusable are generic in character, meaning that they are easy to

customize via parameters to a variety of applications or, even better,

that they appear self-adaptive to input data types.

3
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To help the prototyper achieve reuse, the prototyping system must give

support for 1) finding a useful module in a large collection of

candidates, 2) understanding the functionality of candidate modules in

the context of the target system, and 3) customizing the module and
.%

inserting it into the current design. This is viewed principally as a

database problem in helping the prototyper deal with the large quantity

of information which will be helpful in distinguishing and understanding

modules (e.g. specification text, PDL descriptions, test cases, prior

usage examples, etc.). We believe that innovative database capabilities

are needed to organize this information so that browsing by navigation

Ar through multidimensional relationsh'ps is convenient.

1.1.3 Prototyping Tools

Prototype development differs from normal programming in that it is

inherently a trial-and-error activity. Further, it should be an activity

involving system analysts, not programmers.

We seek to develop an integrated set of tools which support this activity

directly. We assume the use of current workstation technology which

provides high-bandwidth graphical displays and fast-response

interactivity. The challenge is to harness this technology to provide

the ease-of-use which is critical to prototyping system effectivqness.

1.2 Del iverables

A No technical deliverables per so were specified for this contract, beyond

periodic reports. The substantial deliverables were scheduled for later

months in the effort (subsequently canceled). There were four tasks

scheduled for this initial contract, being the specification of 1) the

prototyping language, 2) the supporting database system, 3) an Ada

". '~'implementation, and 4) reusable components. This report constitutes the

finished deliverable on all four tasks. The following discussion summarizes

the results.

1.2.1 Prototyping Language

A Prototype System Description Language, PSDL, is proposed here. It is

described in terms of its 1) control structures, which are very simple,

. . .
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2) data structures, taken from Ada, and 3) function definitions, which

are based on the available set of reusable modules. (Section 3.)

1.2.2 Database

A database system for support of reusability is called the Software Base

Management System, SBMS. It is described here in terms of its data

model, access operations, control system, and tool support (Section 4).

* 1.2.3 Mapping to Ada

The result of a prototype specification will be Ada source code which can

be compiled to produce an executing prototype. This mapping is

*straightforward because the PSDL structure has been developed to fit

within the packaging concepts of Ada, and because Ada data typing is used

directly (Section 3.4). The principal problem here is that Ada data

typing is not always natural for functional specifications.

*" 1.2.4 Reusable Module Specification

The modules used in prototype execution must meet certain interface

standards, to permit rapid incorporation (Section 3.5). A standard

procedure-call interface is used, but the module must adhere to certain

parameter standards. Additionally, modules should be reentrant, with

external storage of state information.

1.2.5 Use;- Interface

Not specified in the original contract, but subsequently determined to be

an important topic, was design of the human interface needed for

prototyping tools. These requirements are discussed here at some length

(Section 5).

1.2.6 Conclusions

The overall result of this work, and of related follow-on work, is that

the approach taken here is a viable one. Continued development of this

systemis expected, as funds can be obtained.

5
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> 2. Components of Prototyping Environment

Any design environment must have three fundamental tools: 1) A language to

" describe designs, 2) a database to hold design objects, and 3) a human

interface through which the designer can create and view design objects. These

. tools should be fully integrated and be available across all phases of the

software life cycle, to minimize designer training time and to minimize reentry

of data.

2.1 Language

We can anticipate a specification language which is: 1) executable, in the

sense that it can be translated into code which gives correct input/output

__ .. functionality; 2) simple, in that it can express system functionaiity much

more concisely than (say) Ada does; and 3) hierarchical, in that it

explicitly supports the composition of subfunctions into functions, and of

data elements into more complex elements.

Such a language will achieve simplicity by providing three types of

abstraction: 1) Control abstraction, using data flow to express precedence

relationships and otherwise assuming that all activities are concurrent

tasks; 2) Data abstraction, using the methods of data management to express

logical data relationships without physical encodings; 3) Function

abstraction, whereby input-output relationships are expressed through

decomposition and basic mathematical operations.

2.2 Database

. A database system must not only store design objects, namely fragments of

specifications, designs, and code, but must store the relationships between

those objects. The database is the principal integration element carrying

information across the phases of the software life cycle. All of the4wft

facilities provided must equally well support the data objects that are used

at different stages in software development, namely specifications, designs,

' ;and code.

't.

a) Composite Objects. Software objects will almost always be made up

of components or defined by the interaction of components. Each

object must be linked to its components and must state, explicitly

or implicitly, the relationships between code modules. Further,

46 6
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objects can have links to other objects as attributes, as when a

block of code has a delay model associated with it. We presume

that a database system will provide the ability to extract views of

these composite structures, as when showing the decomposition of a

performance specification down into component delay values, while

not displaying unrelated component information.

b) Reusable Objects. Existing objects, including those from prior

projects, must be easily accessible through a classification

system. These classifications would categorize objects by diverse

criteria such as subject area, optimization criteria, or by naming

conventions. Users will find reusable objects by browsing through

sets of objects identified by logical combinations of categories.

c) Configurations. All objects will be subject to continuing

revision. This requires a version control system to maintain

multiple versions of each object. It also requires configuration

management so that overall systems can be configured from selected

versions of component objects.

d) Test Cases. All objects in the database may have an associated set

of input values which stress the behavior of that object. for

specifications these might be called scenarios. Each test case

would have a description of acceptable output values. These are

used both to test object implementations and to illustrate object

behavior (for human understanding).

e) Data Dictionary. Data types described as part of a specification

will be used in all later phases of software development. Types

will be composite objects, typically defined in terms of other

types. Types look like other objects in the database, but are

distinguished here because of their very extensive reuse throughout

the development process.

2.3 Human Interface

To aid the human in dealing with complex information, tools for viewing and

editing system data are of course needed. A strong emphasis in the

7



prototyping systems is on graphical descriptions which display interactions

of components, to augment textual and symbolic descriptions.

a) Editing. A syntax-driven editor is assumed to be available for each

language in the system. It would support graphical as well as

textual syntaxes. This editing ability would also be available for

creating and revising data objects in the data base.

b) Browsing. A viewing mechanism for objects in the database will

also serve as the general-use data projection mechanism of the

system. It will provide the ability to look at complex objects by

-"panning" and "zooming", as those terms are interpreted for

multidimensional images. For browsing and other purposes, the
system can assemble a "view" as the user develops an understanding

of what information is needed; a view indicates what data to

* project and what object relationships to be followed in looking for

related objects.

c) Interpretation. A visual feedback mechanism in the execution of

.. ~descriptions will provide a natural debugging support for the

design representations. It will also aid in understanding the

dynamics of reusable components and their function in a particular

context.

-
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3. Language Aspects

The Prototyping System Description Language (PSDL) is the most visible part of

the prototyping system, but is also the most difficult because of conceptual

developments needed to make it effective.

3.1 Requirements

a) Specification-Level Language. We assume that the prototyping done

in RaPIER will be for functional specification validation not for

design evaluation. The system description developed in PSDL will

correctly reproduce the functionality (outputs as a function of

inputs) of the system, but will not necessary map into any later

implementation. That is, the internal components used in a PSDL

description will not always directly correspond to components of a

final design.

While PSDL may be extended later to be a design language, that is

not the objective of the present RaPIER effort. This priority

manifests itself in the description of system timing. The

enforcement of software delay constraints is a design issue

relating to the partitioning of code and speed of processors used,

and so is not part of a functional level prototyping effort. PSDL

will provide the ability to describe timing constraints, but they

will not affect prototype execution, except 1) when programmed

actions depend on delay values, and 2) when prototype execution

speed is adjusted manually to meet design constraints, by means of

actions outside PSDL semantics (e.g. faster machine, optimized

compiling, etc.).

The goal of doing functional-level prototyping, rather than design

prototyping, is to 1) achieve the lowest complexity in system

description via abstraction, and 2) to permit prototype results to

be applicable to all possible later embodiments.

b) Prototyping. The use of PSDL for functional prototyping imposes a

certain focus on it. Prototyping requires an efficient interface

to a code generation system, so that the executable code is not

dreadfully slow. This rules out the use of the type of

.9
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specification language which is often used for formal verification,

namely one which states invariant properties of computation. For

5 example, the Sort function can be specified easily by giving the

ordering relationship on the sorted objects (it's outputs), but

generating a program from that relationship can yield a slow

implementation.

As a prototyping language, PSDL makes no attempt at this time to

express alternate views (e.g. dataflow versus control flow) of a

design, as is found in some non-executable specification languages.

Rather, it is intended to focus entirely on the data relationships

implemented by the prototype.

c) Reuse. The RaPIER prototyping approach stresses reuse of existing

software modules as a strategy, rather than generation of new code

for each prototype. This implies a focusing of development effort

on interfacing software modules with each other, rather than

building code generation facilities.

Reuse also requires dealing efficiently with the kinds of code that

lend themselves to reuse, e.g. generic procedures and object-

oriented structures. The object-oriented style is useful because

it packages together all functions dealing with a single data

structure, so that the data is hidden from the system

specification, and need not be expressed in PSDL. However, this

stresses the need in PSDL to deal both with those functions as

entities in a process and with the collection of functions as an

object; the linkage between them requires special attention.

An implication of the reuse orientation is that a PSDL description

may not be understandable to a human who does not understand the

operation of the reusable software modules employed. While

annotation text for abstracting the meaning of modules may be

provided, it is not the intent of PSDL to provide comprehensive

functional descriptions.

,I 1 1-10



d) Data. PSDL best fits in Ada environments, because Ada is a

suitable language for code reuse. Therefore it is desirable that

the data types in PSDL be similar to Ada in style.

e) Incompletely-defined Systems. Prototyping will frequently be

carried out on partial specifications. It is desirable for PSDL to

work as effectively as possible in these circumstances, by use of

suitable defaults. This requires facilities for hierarchical

definition of data and function, plus good support for progressive

redefinition of these objects.

3.2 Semantics

PSDL uses a dataflow approach to description, as do many other specification

languages. This permits minimal expression of operation sequencing, with

only data precedence relationships shown. This form provides for expressing

the most possible concurrency in execution. Concurrency per se is not an

objective of PSDL, but the availability of concurrency is a mark of least

binding to any particular implementation, as is appropriate for a functional

specification.

The system being described is viewed as a large black box with specified

functions relating inputs to outputs, and with definitions of I/O data

types. The functional description is decomposed into a composite of

interacting black boxes, each defined in the same style as the original,

with interconnections defined as direct linkages of outputs to inputs. The

* following sections describe these basic elements: the data types, the

function descriptions, and the control/interconnections.

3.2.1 Data Descriptions

Data will be described in PSDL using Ada type and subtype facilities,

e.g. using range, array, record, case, etc. This data model is too

closely tied to physical representations to provide high-level
abstractions of data, but it is sufficient and convenient for code

generation capability. In later versions of PSDL, extensions to the Ada

facilities will be provided to achieve somewhat greater abstraction.

Virtual variables will be added, which are essentially procedure calls to

calculate implied results from other data in the type. Substitution of



igeneralized objects (abstract data types) for explicit data types will be

provided.

It will be frequent that two functions to be linked together will not

have matching data types. If function A feeds function B, with A

producing an array of integers and B accepting simple integers, then PSDL

will perform type conversion by executing B multiple times over the

values in A's array. This simple type conversion will be provided

initially as explicit functions, with built-in abilities provided in

later versions.

": The semantics of variable name usage will be "single assignment". That
Ais, every variable instance is written only once, and never modified

(conceptually). Thus the execution of the PSDL description is

interpreted to mean that function outputs are streams of results with

each output value being a different instance of the output variable. Of

course few implementations will do it that way, but it is the

responsibility of the implementer to not let space-saving data

assignments change the result of the computations.

--.' Support for the prototyping of partially defined specifications will be

provided through default values. Any operation on an undefined input will

cause an undefined output. The undefined type state will carry a code

value which is propagated unchanged though each function so that

, '. ~undefined system outputs can be traced by to their cause.
4*m

3.2.2 Function Descriptions
~''- The contents of each "black box" can de defined in several ways:

1. As Ada code, either a reusable module or coded directly
through RaPIER;

2. By PSDL composition, where the function is defined by the

interaction of smaller functions;

3. By PSDL primitives which define outputs in terms of inputs

by a variety of mathematical notations.

An early version of PSDL will rely heavily on Ada and compositions with

the exception that PSDL will provide direct substitution operators (where

12
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the output data type is a rearrangement of input data). Later versions

of PSDL will be principally distinguished by increased capabilities in

PSDL primitives.

Support for partially defined specifications will be done with library

software, not PSDL semantics. A default module will be provided which

generates a random output value, from a specified range, for each input

value. Another software module will substitute human activity for a

function by going to a terminal for the function output. Many variations

on these default strategies can be envisioned, and made available to the

prototype as reusable functions.

3.2.3 Control Descriptions

The activities carried out in a directed graph of functions are

interpreted to be completely concurrent except as limited by data

, availability. The output of each computation is a message which is

copied into a separate input queue for each receiving function.

Functions are activated by messages in their input queue(s). Of course

real implementations will seldom execute that way, but they must produce

the same computational results as that conceptual model.

To make the described system executable, a small amount of explicit

control information is required from the programmer/prototyper. This

occurs in the form of indicating which input data triggers execution of a

function. Thus a function receives input data in two forms:

Activation data: a message which causes execution of the function.

=1

Reference data: a message which is available for use by the function

A critical distinction between these two occurs when a sequence of

messages passes over the same path to a function. If this sequence

occurs on an activation path, it causes multiple executions of the

receiving function. If it occurs on a reference path, only the latest

message is seen by the receiving function.
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All other aspects of control, namely of determining the sequencing of

operations, is determined by precedence relationships between functions.

The semantics of control are prescribed by a serializing execution model.

That is, a serial execution of the functions is determined by the rules

of an execution model, and any other implementation must produce

equivalent functional results. The three rules are:

1. Precedence Rule: If function A has output which is an input to

• . function B, then A executes before B (this is a trivial rule).

2. Pipeline Rule: If function A produces multiple outputs on the

*same activation arc, then all down-stream activities caused by

the first activation are completed before the second activation

commences.

-Y 3. Synchronization Rule: If function A has several inputs, then A

should not execute until all possible input data is available

(i.e., all upstream activities that are going to execute have

executed).

In case of conflict, the lower number rule overrides a higher numbered

rule. In the case of cycles, all cycles are broken at the point of

feedback for the sake of determining function priority. In the case

where the relative sequencing of two functions is not determined by the

above rules, a random sequencing is chosen.

Timing is not a semantic issue in PSDL, as it is defined in the RaPIER
version. For user convenience, a notation can be attached to specify

delay values for responses times between inputs and outputs, but these

can have no interpretation in a prototype of the specification (where

time is compromised). Later extensions to PSOL are expected to provide a
1 . better treatment of timing.

3.3 PSDL Syntax

This syntax discussion has three major parts: data representationt operator

representation, and system structure. The overall system being defined is

14



viewed as one big object (operator) having inputs and outputs with specific

data representations. That object is described internally as a PSDL

composition, namely saying its function is defined by the interaction of

some set of components. Each component is an object of the same form as the

original. Thus, the descriptions of the system inputs and outputs, by data

type, and of the operator function in terms of the interconnect of other

operators, serve to define a PSDL system. Each of these is described here

in both a graphical syntax and a database representation (textual syntax).

3.3.1 Data Descriptions

Ada data types are used exclusively in the initial version of PSDL. If

there is a difference between Ada and PSDL usage, it will be that PSDL

more heavily uses "array" and "case" type structures, so these need to be

easy to express.

3.3.1.1 Textual Data Description

The Ada syntax will be used directly as the basic syntax. Extensions

will probably be added later to facilitate the use of abstract data

types.

The database representation of data has two parts, type descriptions

and instance values. An instance value is just a bit string which is

interpreted according to its associated type description. Initially

there will be no usage of composition on instance data, where several

instances are interpreted as concatenated to form another instance;

but that extension will be an early performance enhancement. The type

descriptions are composed in a straightforward way from type objects,

each of which represents one level of record structure and array.

Thus a complex data type will be described by a linked tree of objects

even though its instance data is a single contiguous object.

3.3.1.2 Graphical Data Description

The exact graphical format for presenting data will be the subject of

experimentation, within the guidelines of the following strategies.

The structure will be tree shaped, with each node being a rcofd

construct. Each such record construct will be assumed to define an

Arxay (repeating group) of such records unless explicitly noted as

15



having a unique value. C structures are shown as an extension of

the record structure, yielding a choice among record types for each

instance. Fields in a record are denoted by horizontal separation

while options in a case are denoted by vertical separation. Care will

be taken to achieve good visual separation between element names and
element type declarations, because users frequently are looking at

names only or at types only in using or understanding an overall data

structure. An alternative layout to be investigated is a vertical

-. sequence of components, with indentation to show groupings.

3.3.2 Operator Descriptions

A PSDL composition operator is defined to be the interconnection of

* component operators, also called a graph. The basic job of PSDL

* descriptions is to describe what outputs connect to what inputs. Added

to that basic function structure are four topics of special interest: 1)

Data relationships for type checking, 2) activation information for each

operation, 3) interfaces to object-oriented software modules, and 4)

default values for undefined inputs.

3.3.2.1 Textual Operator Description

Our fundamental approach is to represent operators and their

interconnections non-procedurally, in very much the same way that they

will appear in an object-oriented database. Each operator has two

interconnected parts: Interface and Body.

An I object includes these attributes:

or Input ports, and their data types

Output ports, and their data types

Actual parameter to formal parameter name mappings.

- ~Presentation information (operator icon)

Each port can be either an activation port or a reference port.

There are no bidirectional (in-out) ports.

@4 16
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A PSDL aQW includes these attributes:

Component List, with port names,

Interconnection list (arcs), with set of connected port names,

Presentation information (graphical positions)

This component list gives the name of each internal operator,

and specifies where the data for each operator input is obtained

(actual parameters). Each data source is some output of a

component in that same list. For completeness, the first

component in the Component List is always the interface

component, which mirrors the input-output ports inherited from

the interface of the object being described. (Since this

"interface component" looks at the surrounding interface from

the inside out, its directions are reversed from the ports in

* the interface object; its inputs are the output ports, and its

outputs are the input ports). Note that component names are
just pointers to the Interface objects of the component

operators.

Of course there are other syntaxes for describing a directed

graph, often achieving more clarity of presentation by differing

degrees of repeating some of the information. Such alternate

forms may be appropriate for PSDL, depending on implementation

objects in later versions.

3.3.2.2. Graphical Operator Descriptions

The graphical syntax for operator icons and graphs is the least stable

aspect of the PSDL system definition. This is because the graphical

syntax is easily changed and because future experiments with human usage

are likely to cause continued evolution in the syntax.

The basic syntactic elements are:

a) Function. An operator with no internal state is represented by

a circle. The name of the function appears below the circle.

The name of the body (implementation) appears i'side the circle.

Some common functions, such as simple conditionals, may have

distinctive icons other than a circle.

17



b) Procedure. An operator which maintains internal state is

represented by an icon which is part circle and part box. Its

labels are the same as those for a function. The term operator

which includes both functions and procedures is represented by a

"bubble", which refers to all of the above icons.

c) Port. An operator has input and output ports by which arcs

- - connect to bubbles. Ports can have names outside the bubble

* (actual parameters) and inside the bubble (formal parameter, in

the body of the operator). Each type of port can have a

separate icon. An activation port is represented by an

arrowhead with a single shaft, while a reference port Is shown

as a double-shafted arrow.

. Pd) Arc. The connection from some output port to some input port

represents data flow between those ports. A net (arc) connects

one or more output ports to one or more input ports, with a

single data type throughout. The data type associated with an

arc is optionally displayed as commentary on the net.

e) Persistent Data. A procedure can contain state information

which is retained between activations of the procedure. This is

shown explicitly as a box embedded in a net. If a declared data

A ~element is initialized from an external port then it is shared
Sglobal data; else it is static data.

. "Object-Oriented Modules. An 0-0 module typically has multiple activation

inputs. It can be represented directly that way in PSDL without semantic

loss, but such a representation does not give a clear picture of system

operatioi. Preferably, the various methods are split out as separate

., . operators, sharing common state information on a reference basis. In that

case, the state information need not be typed, because its structure is

hidden within the object; it can be given a data type name which is not

further defined.
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The operator names are given by "object_name.method" so that the object name

is preserved in each operator, but even that is not essential for correct

functioning. The key understanding here is that when such a module is found

in SBMS it provides several operators at once rather than just one; those

operators can be used (or ignored) in whatever combination makes sense to

the program.

Graphical Operator Icons. Operators will be shown as ovals with inputs as

arrows to the left for activation inputs and on top for reference inputs.

Outputs will leave from the right and bottom. Data types will be shown in

square boxes along the arcs connecting ovals. Reference inputs will be

* shown with short double arrows (two parallel shafts) and a name of the

referenced data (often a single letter will be used, like when long wires

are broken on an electrical schematic.). Activation inputs will have arrows

continuous from their sources.

Built-in data mapping functions will often have special icons to graphically

portray their function, particularly for merge and case. Other mapping

functions will have very small icons, so they will not interfere with

visualizing system operation. This is an area in which continuous

refinement can be expected, so exact icon definitions will not be attempted

at this time.

3.4 Mapping to Ada

The structure of PSDL was developed to permit easy translation into Ada.

The strategy of this mapping is seen in the three dimensions of function,

data, and control.

3.4.1 Function Mapping

The library modules from which PSDL prototypes are composed will be

provided in Ada. They frequently will be Ada packages, but could be

procedures. In certain kernal modules, the reusable component will not
be source code but will be a generator which creates source code. Any

user-produced Ada procedure will be includable if certain mechanical

interface standards are followed (section 3.5).
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4. -. 3.4.2 Data Mapping

PSDL is defined in terms of Ada data types, so mapping of data can occur

directly. The stress on this approach is that Ada data typing is very

laborious for some useful constructs at the functional level. These

involve generic functions which are reusable modules intended for wide

use. An example is a module which generates (or interprets) commands

taken for a list of commands having a variable number and type of

parameters. If the command list is provided at compile time, the data is

well defined. However, the generic parameter list is not easy to

' describe. This type of problem may restrict the extent to which type

checking can be enforced at the time the PSDL graph is constructed, so

..- *:.[ errors could be detected only at the time the PSDL function is translated

-- into Ada.

3.4.3 Control Mapping

Each level of PSDL description, namely a single graph, would be mapped

into an Ada package. For simple graphs the package contents would be

just a set of procedure calls to contained components. In the case where

a function can produce several outputs (activations or messages) for one

input, then a dynamic scheduler is needed within the package. A simple
queuing mechanism will probably do that. This dynamic scheduling marks a

difference between an object-oriented language and a standard procedural

language.

3.5 Specification of Reusable Modules
. At this point we know of no particular constraints on reusable modules to

fit in PSDL prototypes other than that they must have a procedure call

interface with certain parameter conventions. For Ada translation, the

modules must be Ada source code. For interpretation, compatible object code

from any language will do.

A database entry for the modules must be prepared, giving its interface

information. The one quirk with PSDL is that a module with multiple entry

points is represented by a separate logical function for each entry point,

so that the explicit set of outputs for each entry point can be displayed in

the PSDL graph.

2.
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The interface specifications for code modules are established to provide for

interchangeability of modules. These specifications are implementation

specific (not dictated by PSDL) and may be changed. First, all parameters

are called explicitly (no globals) and are passed by name, in the simplest

implementation strategy. Second, each output message is conveyed by an

explicit procedure call from inside the module to a message handler, so that

multiple output messages can be accommodated. If procedures exist that do

not have these properties, they are usually easily fixed by putting the

preexisting code inside another procedure which serves only to adjust the

interface formats.

In summary, the specifications on reusable modules are not very confining,

and a wide range of capabilities can be accommodated.

21
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4. Database Aspects

This section provides a logical view of a database system for storing reusable

ADA code and other software objects in RaPIER. The intent of RaPIER is to

exploit effective reuse of existing software modules to expedite the

construction of prototypes. This emphasis on reuse results in the need for an

effective database management system.

The primary function of the database management system, called herein Software

ABase Management System (SBMS), is to provide support for human interactive

selection of software modules. SBS will also support the design activity

"' itself by storing design objects and composites created through use of the

prototyping language PSDL.

4.1 Requirements

The user will participate in three types of activity during a RaPIER

prototype design session: Browsing, Probing, and Construction. These

activities will be freely inter-mixed, but each one presents particularA demands on SBMS functionality. Primarily, the data to be stored in SEWS

will be 1) software modules (mainly in ADA and PSDL), 2) data descriptions,

p 3) classification data, 4) test cases, and 5) current/prior design

information.

4.1.1 Browsing

Browsing is the activity of the user looking for something that he could

not precisely describe. Much of the effort in browsing involves the

human trying to understand the classification system, relative to the

needs at hand, and locating a potentially useful component. This is done

by retrieving a set of objects in a preliminary query, determining

-_ attributes of wanted/unwanted objects in that set, modifying the query,

and repeating the process. the user sees the database as a large

unstructured set of objects, and only by forming queries on attributes

can a workable subset be found.

A classification system is needed by which the general properties of

available software modules are described in a standardized vocabulary.

pTypically classification schemes will be key-word oriented (e.g. math
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routine, sort routine, device driver, etc.) or will form a hierarchical

partitioning (like Dewey decimal system for books). It is expected that

multiple such schemes may be tried on SBMS, over time, so the requirement

on SBMS is that it effectively support any such classification system.

The query language needed to support browsing will facilitate retrieval

of small groups of related documents, either in terms of classification

attributes or in terms of relationship to known objects such as data

types. It should also be able to utilize an application-specific

thesaurus if one is provided with the classification system.

4.1.2 Probing

When a database object has been identified to be of interest, it is

examined more closely. This involves seeing its components, its usage

constraints, its usage in prior designs, its reaction to test input

cases, etc. This probing type of access will likely be the mode used by

software tools when they access SBMS data. By tools we mean the browser,

editor, PSDL interpreter, and PSDL translator.

In many respects this probing facility is conventional, needing only to

retrieve attributes of identified objects. A possible difficulty arises

when hierarchical attributes are involved, for the query needs to specify

how much information is of interest for each attribute.

S.

4.1.3 Construction

During the process of composing a design, the user will use SBMS as a

depository of intermediate results. It is expected that a finished

design will feature several levels of composition, with components at

each level treated equally in terms of storage and retrieval. It is

efficient to store all such components in the SBMS because 1) SBMS

provides basic tools for accessing and viewing these objects and their

interactions, 2) many components of the design will already be in the

SBMS and do not need to be copied, and 3) the new design components

should be saved in the SBMS for future reuse or reference.

Interactive use of SBMS during the design process implies the need for

part of SBMS to be running on a workstation with sufficient graphical
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capabilities to present object structures in a meaningful way. Of

course, there are various degrees of interactive viewing/editing tools

that might be provided with SBMS.

. SBMS should also provide a version control mechanism and/or a way to

enforce separate private workspaces which share public data.

4.1.4 Data Types

-:' The data to be stored in a prototyping system is rather heterogeneous.

Software modules will basically be chunks of text that make up the bodies

of Ada packages. They will also have interface descriptions (called

"specifications" in Ada), which are separate but interlinked objects that

specify inputs, outputs, data types, and other descriptive information

common to all bodies which are embodiments of that function.

Other stored data include classification information, which may be either

relational or hierarchical, and probably will be a mixture of both.

There will also be numeric data stored for testing and demonstration

purposes. Each object may also have annotations attached which will be

textual. The system metadata, by which other data types are defined, is

also stored in the system and manipulated by the standard operators used

for other data.

One typical but demanding data type is the description data for program

(Ada and PSDL) data values. This type information is frequently

referenced and clearly hierarchical, being expressed of layers of record,

array, and case composition operators. Retrieval of one complex data

type description is a good test of a DBMS, and demonstrates the inherent

..weakness of the relational model.

With this diversity, a general purpose, object-oriented, data model is

needed which will be suitable, in the long run, for the representation of

hardware and software system designs.

A4.1.5 Implementations

It is anticipated that the functional capabilities of SBMS will increase

from phase to phase. Initially, a demonstration system will have enough

capability to retrieve objects from a small library. A second phase will
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have the necessary tools for general-use prototyping. A later version

can be anticipated that should provide good support for the process of

designing production software. The following discussion of SBMS

capabilities indicates specific levels of functionality intended for

these phases.

4.2 SBMS Functions

The following strategies of SBMS development give an informal definition of

SBMS semantics. A later section discusses the query syntax.

4.2.1 Data System

An object-oriented data model will be used, so SBMS will be seen as

managing a pool of objects. An object has an identifier, a type (class),

some attributes, some components, and some constraints. The identifier

is unique in a flat name space (at least in the early versions). Each

object may also have user-provided name attached as an attribute. The

type of the object is described by another object (of type "type" or

"class"), whose attributes describe the domain information for each

attribute of the instance object. Type objects will be arbitrarily

constructable, but the initial version will have only a small number of

fixed types such as Interface, Ada code body, PSDL body (graph), view,

text string, and numeric (test case) data. These are logical types; the

implementation will likely have a somewhat different set of physically

implemented schemas and objects.

Attributes have values which may be compared, edited, calculated,

printed, etc. These values may be complex structures of simple values,

as definable by PSDL data definitions of arrays, records, etc. In

addition to attributes, an object can have components, which are objects

themselves, and whose aggregation makes up the parent object. Some would

argue that components are attributes and do not deserve special

treatment. The difference between them is mild, but it turns out to be

very useful in design databases and so is accentuated: An attribute of X

directly describes X, while a component of X is encoded as a pointer

which can be followed to obtain indirect descriptive information.
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Constraints are of two types, implicit and explicit. Implicit

constraints are implied by type information, and their violation prevents

.S the object from being stored in that form in the data base, as being not

meaningful. Explicit constraints are user-defined procedures which may

,. " be automatically invoked. If X=f(A,B,C) is a constraint, for example, it

can be used to supply a value for X or to check the value of X; if an

existing value for X does not conform, it is left in place but the object

is marked as inconsistent. Implicit constraint enforcement can be

vsupplied in the initial version of SBMS, while explicit constraint

management will be supplied to some degree in later versions.

4.2.1.1 Classification

Classification data will be treated as attributes on the object, and

each object can have as many classification values attached as needed.

Of course an SBMS implementation may physically store classification

attributes differently than other object attributes, because they will

tend to be used in different access patterns (namely an index

structure would be used). In an initial version of SBMS, no

particular facilities will be provided in support of classification,

other than the ability to attach attributes to objects and retrieve

groups of objects accordingly. In later versions tools for building

classifications can be provided# namely mechanisms which make it easy

to assign objects to categories and improve access efficiency.

4.2.1.2 Queries

The choice of a good query strategy for an object-oriented database is

the subject of extensive national research at this time. The SBMS

strategy is to provide a basic query facility for the initial version,ii and be open to further research results before committing later
versions. The initial version assumes only two types of usage, namely

interactive access during browsing/probing, and single object at a

time access by the PSDL translator that generates Ada. In neither of

these two cases will complex queries be encountered: rather, complex

operations will be accomplished by moving (navigating) incrementally

through the possible queries.
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Select, project and navigate capabilities, which are discussed below,

are to be provided in the initial version.

Select:

The set of objects viewable at one time is determined by a view

defined by AND, OR, and NOT combinations of attributes. In addition

to these Boolean combinations, the operator "includes" and "is

included in" are also provided, to deal with composite data. For

example if we wish to find a software module that deals with floating

points numbers, we would select modules whose input data types

"include" floating point numbers, to find them even when they are

mixed in with other data types.

Project:

When an object is retrieved, only part of its attributes are of

interest. A "projection" will determine which attributes are needed.

The projection description will be managed separately from selection

description in SBMS since they will be modified by the user rather

independently. It is recognized that the simple binary

r suppress/expose form of projection is inadequate for later versions of

SBMS, but it would suffice for the initial version.

Navigate:

For a given object, the attributes of related objects will be

retrieved by implication (or navigation). Related objects are those

whose names appear as attributes of the first object. Often an

attribute of the initial object will yield a set of related objects,

as when a set of components of a composite object are retrieved, so

the returned data might be an array of records.

4.2.1.3 Update

The normal update mechanism will be "append", used when adding a new

object instance to the database. Changes which involve modifying or

deleting existing data must be done within the context of a data

control policy (discussed in following sections), which will be

application dependent. For initial prototype-level execution of SBMS,

the update policies will be manually enforced and subject to change.
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Therefore initial update capabilities will be very simple and in two

forms. For programs, SBMS provides access to objects in the form of

direct reference to the bits of the object, so no constraints are

enforced (they are assumed to be built into the application program).

For interactive users, an editor allows modification of individual

object fields, subject to explicit constraints for that object.

Neither form of update requires an update language syntax at this

t i me.

4.2.2 Data Control System

The control of data integrity and access involves three sets of

functionality: Write protection, access control, and constraints. Of

these, access control is the most complex because it deals both with

access concurrency and with privacy. The initial SBMS version assumes

only a single user and minimal needs for privacy.

4.2.2.1 Write Protection

Large portions of the data base will be read-only, so enforcement of

write protection is important. Every logical object will have

. . separate write protection. A separate privilege, "append-only", will

be available for such things as classification information, which may

be extended during normal usage. In all versions of SBMS, object

protection will be exerted at least by explicit protection bits, or

the logical equivalent thereof.

4.2.2.2 Access Control

In the early versions, local workspaces will be provided, each with

access to shared database objects. The intent of this is that new

objects for a demonstration can be built up on such a workspace, and

then deleted as a whole at the end of the session. These workspaces

can be retained and used individually for specific demonstrations.

Individual objects from a workspace can be moved into the shared area

at will. Objects in the shared area are read-only so that existing

workspaces are not affected by updates to the shared area.

In a later versions the fact of multiple people working together in

development of one prototype causes the need for much better access
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control. As an end goal, privacy restrictions will be imposed by a

View mechanism, whereby a user is provided visibility to a subset of

the data objects and is not aware of objects outside that view. A

view is expressed like a compound query, and so can distinguish any

object from any other object (one viewable, the other not).

Concurrent access is facilitated by versions of objects, whereby older

versions are available for public use even as newer versions are being

prepared. A "Configuration" is any assemblage of object versions

which make up a design. Thus, an over-all version of some prototype

design can be in use, even while parts of its are being updated* by

forming a configuration of stable versions of its component objects.

No provision will be made in early versions for concurrent updates to

the same version of an object by concurrent users. Normally, two

users would be working on different versions of the object.

4.2.2.3 Consistency

Consistency rules come in two degrees: 1) typing rules, whose

violation prevents an object from being stored in the database, and

2) policy rules whose violation causes an object to be marked as

inconsistent (needing further processing). The initial version of

SBMS will enforce typing rules on data and objects at the level of Ada

data types. Later versions will enforce expanded typing rules as

appropriate, and will provide a basic mechanism for tracking and

maintaining a consistency policy. This will consist of a "level of

certification" attribute attached to each object which will help

control in appropriate public access to uncertified objects.

4.2.3 Tool Support j
The principal utility tools for SBMS will be the browser and editor.

4.2.3.1 Browser

The browser provides a human interface for forming queries and

displaying results during a user's search of the database. The

initial version of the browser will be adequate but possibly primitive

in that it provides only textual output. There is considerable
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latitude for supplying graphical output, but an appropriate way to do

this is undefined at this time.

The browser will be incremental in style. The user will alternate

between selection of sets of objects and probing individual objects.

Sets of objects are incrementally refined by adding in one attribute

condition at a time. Initial implementation will require that the

first browsing action will be selection of object class (type) so that

all sets of objects will be homogeneous by class. A set of objects

selected by an attribute specification will be shown as a list of

object names. The user will then probe individual objects to see

. their particular attribute values. Later implementations may provide

the ability to show certain attributes for all members of a set in the

initial listing. Probing provides a view of the object's attribute

structure as a vertical list of fields, with indentation to highlight

internal structures.

4.2.3.2 Editor

The editor provides the means to enter data into specific attributes

of SBMS objects. It will be capable of checking type constraints on

.: Weach field entered. This permits the initialization of SBMS objects

and the entry of data for objects which are not directly supported by

other tools. The extent to which this editor is merged with other

specialized editors, such as for PSDL graphs, is unclear at this time.

In late versions of SBMS the editor should become a generic tool, so

that it adapts to each object type and edits the object in a manner

appropriate to the semantics of that object. This requires self-

• "describing objects, to an extent not immediately anticipated.

.! ,,- 4.2.4 Query Syntax

Queries in the initial system can have two forms, interactive and

, :. "programmed. Browsing and probing are interactive forms which are

implemented on top of a programming interface. The browser has no

textual query language. Most browser decisions are made by selecting

from a dynamic set of options. That is, user indication of object class,p
. . attribute field, and object within a constrained list are all done by

means of pointing device (e.g. mouse) rather than keying in a name.
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The syntax of the program interface is in the normal procedure-call form.

The user (program) has a set of procedure calls for these functions

(initially): create object, access object, copy object, delete object,

find by name, and find by attribute value. Other functions may be added

in later implementations, but this basic set is sufficient for initial

prototyping efforts of browsing, editing, and translation. Note that

objects are referred to in these commands by unique token values which

are administered by SBMS. Note also that all metadata on objects is

encoded in other objects, so the above commands serve to provide a wide

range of DBMS control and query functions.

The syntax forms given here for both the browser and program interface

are simple so long as an object has matching logical and physical

schemas. An extension of SBMS will allow logical objects to be defined

independent of physical objects, which will solve both projection and

navigation problems with the existing structure described here.
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5. Human Activities in Prototyping

The construction and debugging of a prototype involves substantial human

activity, so success of the PSDL system depends in part on how well these

prototype developers can carry out their functions.

The expected users of PSDL will be people who are systems analysts, namely

people who understand computers but should not be spending their time

programming. These people may be occasional users of PSDL, so the learning

r curve should be short. They will be much more interested in target system

functionality than in PSDL representations, so the PSDL expression mechanism

must be unobtrusive. The functionality being described will be complex,

r S composed of reasonably complicated reusable modules, so the PSDL/SBMS system

must be prepared to support complexity and to help the user manage a complex

description. For example, the data objects used in the target prototypes will

often involve several levels of type definition, so editing and viewing

mechanisms geared to simple fields and records will be inadequate.

The construction of a prototype is inherently an experimental process, where

the system is expected to change each time it is run. An initial version is

built and executed, showing ultimate users (often different from the analyst

who is building the prototype) where the specification is ambiguous or

inappropriate. The prototype is then extended or revised for another cycle.

If the prototype is well designed, it is possible to try out alternative

execution policies in various combinations by straight-forward parameter
(4" changes. It is this process of rapid evolution for a software system that we

must support.

The human activities in developing a prototype are considered here in four

levels: system specification, component reuse, prototype execution, and tool

4. usage.

5.1 System Specification

A principal human interface problem in specification is simply the

difficulty of coping with complexity. When the prototyper begins to

construct a system, he/she thinks in many dimensions at once. Some aspects

of the system are seen in terms of data relationships, some in terms of

vague functional specifications, and some in terms of detailed
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implementation concepts. As the design progresses, and more details get

filled in, the prototyper will still feel the need to look at various parts

of the system from various points of view. While PSDL is not intended to be

a general-purpose specification language which supports multiple

descriptions, nevertheless the prototyping system must partially support

these needs.

Our approach is to supply strong support for hierarchical structuring of the

system description, both for functions and data. There are four aspects of

hierarchy which are accentuated.

5.1.1 Abstraction

If properly used, hierarchy is more than just a means to hide detail or

control the scope of variables. It provides a means for abstraction, in

the sense that every level of decomposition deals with a single set of

design issues. To make this effective, we intend each level of the

hierarchy to be a free-standing description which can be read and

understood with minimal reference to higher and lower levels of the

hierarchy. This is accomplished by making all functional relationships

explicit at each level and by encouraging the use of

names/comments/annotations independently at each level. This is

different, for example, from the common use of block-structured

languages, e.g. Pascal, where the various levels of composition are only

occasionally given clear semantic abstractions.

5.1.2 Mixed Representations

A particular function can be viewed in several ways: its PSDL graph, Ada

source code, a PDL description, English textual description, timing

model, or input-output data relationships. As a system description

matures, all of these may become available for each finction. This gives

the viewer the opportunity to understand the system functionality better.

The important issue here is to be able to freely intermix these

descriptions throughout a single design representation, rather than

having separate documents for each representation. The problem with this

approach is one of controlling clutter, in that too much data will swamp

the viewer. Our approach is to utilize the increasing economical

technology of interactive graphics to let the viewer switch
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electronically between representations at various levels of granularity.

Initially this will occur by letting the user select repr.sentations for

each function individually: the user uses a pointing device to select a

function within a graph, and a pop-up menu provides the ability to choose

between the available descriptions for that function. In later

implementations it will be desirable to experiment with display modes,

such as having all the data structure descriptions on a graph be exposed

or suppressed as a unit.

5.1.3 Bridging the Hierarchy

All of the design decisions in a software system cannot be adequately

. " encapsulated in a single hierarchical composition. One alternative way

is to augment the hierarchy is the use of an object-oriented style

whereby certain data operations used throughout the hierarchy are

described in a centralized and coherent declaration. These object

descriptions permit collective parameterization and replacement of the

.' various methods which make up a class description.

Our approach, initially, is to explicitly support abstract data typing, a

key component of object-oriented programming. This support includes the

ability to define a data type without specified internal structure and to

retrieve appropriate functions for manipulating that type from the SBMS

module library. The adverse aspect of using such an abstract data type,

which hides its internal state structure, is that generic browser and

editor tools must be augmented to deal with each such type.

L. 5.1.4 Configuration Management

A PSDL graph at any one time denotes a configuration of functions which

deliver an overall behavior. During the course of prototyping the

analyst will alter this graph in multiple ways: add/delete components,

modify parameter settings, substitute components, or just revise the

N. documentation (both graph and text). Some of these changes are trial-
V -

and-error efforts which should be forgotten, but others have value. Inp...
many cases alternative representations of the same function will have

value, and need to be alternately invoked. The specification of a

particular selection of functions for each experiment is called

" configuration management.
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Our initial approach will be to do the selection of a configuration

manually using normal editing tools. This is a statement of belief that

the graphical editing tools are convenient enough to be as effective as

alternative configuration specification techniques. Making this approach

effective, however, requires the ability to name and retrieve prior

configurations. At that point it becomes a database issue, and is

covered by the SBMS data control discussion.

In later implementations, further tools may be added if our simple

initial approach does not prove productive.

5.2 Component Reuse

During the course of developing a prototype, the analyst will frequently

call in functions available in SBMS. This reuse of existing function

definitions is a critical aspect of making rapid prototyping a reality. As

the user manipulates reusable modules, two problem areas are encountered:

understanding module behavior and incorporating them into a graph. In

general, reusable modules will differ from custom components because they

are more generic and so require some customization for each use, which

complicates both understanding and incorporation.

5.2.1 Identifying Reusable Modules

Assuming that a reasonable variety of modules will be available, the user

has a potentially large problem in determining the appropriate module for

a specific application. There are two aspects of this - finding a module

and understanding its behavior relative to the target application. Many

modules will be somewhat generic and can be adapted to a specific

application, but the result of that adaptation may not be obvious.

5.2.1.1 Finding Reusable Modules.

Our approach to finding candidate modules within large library is to

rely on the human's demonstrated ability to scan a list of candidates

and quickly discard uninteresting items. That is, we do not feel it

is necessary for a classification system to uniquely pinpoint a

suitable module; indeed it is probably futile to try to do this. In
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fact, the user may often browse a collection of modules looking for

inspiration for how to accomplish a task.

Two simple techniques for classifying modules are likely to be used.

First, descriptive terms indicating module functionality (e.g. sort

routine, database object) would be used, where several such terms

apply per module. These are used in the obvious way to do a first-cut

reduction in the candidate module list. Second, data associated with

AN module's inputs and outputs will often be typed with distinctive data

types, so the available modules for a certain type can be quickly

found. Both of these mechanisms could be used on a generic basic

(e.o. using widely understood descriptive terms and types) or on a

custom basis where an explicit collection of modules is desired by the

user, using a specific term or type.

5.2.1.2 Selective Reusable Modules.
Our approach to module section is to 1) provide a range of descriptive

Vinformation associated with each module, 2) provide sample test cases

which illustrate behavior, and 3) provide the ability to dynamically

execute a module to watch its operation under specified parameters.

The first approach would consist of providing means to store and

retrieve a) English text, b) a PSDL graph, and c) input-output data

types for each module. The second approach involves storing data

instances for module inputs which give illustrative typical data plus

. "extreme cases used for functional testing. The third approach

involves having the PSDL interpreter work effectively in executing

components interactively, meaning that the interpreter can be invoked

on any component with little overhead effort. By this collection of

methods we hope to provide the user sufficient insight along some

useful dimension of insight that detailed examination of module code

will not be necessary.

5.2.2 Incorporating Reusable Modules

Utilization of an available module requires two kinds of activity:

customizing it to the specific use in mind, and actual insertion into the

graph being constructed. Both of these require certain editing

capabilities.

7,
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5.2.2.1 Customizing a Module.

We must assume that existing modules must be somewhat modified for the

new usage. This can occur in three ways. First, if the change was

anticipated then there is a parameter value to be set. For example a

sort routine might be selectable to determine if outputs are sorted in

ascending order or descending order. In PSDL these parameters are

connected to external inputs, and the editor can provide constant

values to set the parameter. Second, input/output data elements may

have to be adjusted to match the types of the modules. For example if

the input data is a record of fields of which only one field is used

by the module, then the selection of the proper field is done by an

additional selection function inserted outside the reusable module in

the graph. This common need for input/output type adjustment is often

achieved by enclosing the existing module inside a customizing layer,

namely a new graph with conversion routines, to create a modified

module. Third, the internal structure of the existing modcle may need

tweaking. For this, a copy is made under a new name and altered as

needed, using graphical editing facilities. This is common when the

input data has an extra data element which requires processing within

the module.

5.2.2.2 Inserting a Module.

Connecting a module in place in a graph requires specifying

input/output alignments between the ports of the module and the arcs

of the graph. This is the normal binding of actual parameters to

formal parameters, which serves to rename a data instance from its

name in the graph to its name in the module. The second aspect of

-' insertion is describing initial values. All data elements have

default values associated with them, which can be set to achieve

desired behavior when modules are initialized or to compensate for

lapses in specification.

5.3 Using the Prototype

Once a system specification has been developed it will be refined in two

types of processes. First it will be debugged, namely to make it run up to

the analyst's expectations. Second, it will be used to carry out end-user
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experiments, to refine the prototype up to end-user expectations. The

debugging activity will be carried out using a PSDL interpreter, so that the

analyst can correlate internal system actions with external system results.

The prototype experiment activity will be carried out with independent

observers watching external outputs (e.g. user screens), to see if desired

actions occur. In both activities, the prototype will be modified,

Pextended, and permuted.

5.3.1 Interpreted Prototype Execution

Interpretation allows the analyst to watch execution of the prototype, to

see internal operations and the progression of data transformations.

Executing on a graphical language such as PSDL, an interpreter can

provide good visual indications of program progress, and this is an

advantage of a graphical syntax. Interpretation involves several human

factors issues in actual execution, covered in section 5.4.2.

Interpretation also requires correct implementation of a number of

features which are peculiar to prototyping: timing interpretation,

interpreting incomplete specifications, interpreting generic modules,

developing an execution sequence for a declarative language description,

and dealing with poor performance.

5.3.1.1 Interpretation of Timing.

By its character, a functional prototype will not exhibit the same

timing as a later optimized implementation# so clocking the execution

of a prototype will not indicate target system performance. Also, by

its character, an interpreter will run slower than a translated

prototype, so the sense of time is further distorted. Two types of

. timing must be dealt with: 1) explicit programmed delays, which

affect the logical behavior of the program, and 2) implicit

-performance constraints which affect the valid operation of an

implementation (in real-time systems).

Two approaches might be taken to providing time interpretation; the

choice between these two depends on implementation difficulty and has

' .not yet been made. First, an explicit simulated-time clock can beM..

"' introduced which causes asynchronous events at specified times. The
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rate of simulated time can be adjusted, relative to actual computation

time in interpretation, to cause different combinations of explicit

timed events in the system. This approach provides no insight into

the performance aspects of non-programmed implicit constraints.

Second, a time-based scheduling strategy can be built into the

interpreter to supplement its precedence-based scheduling. For this

to work, each library module would be given estimated execution times,

and overall execution times could be calculated during interpretation.

This could be done assuming that all processes are executed

concurrently when logically possible, so the resulting execution time

gives a bound indicating the fastest possible execution.

5.3.1.2 Incomplete Specifications.

Prototyping will usually be carried out (at least initially) on

critical parts of a large system, leaving uninteresting or easily

envisioned parts of the system unspecified. It is desirable that the

prototype run despite this lack of specification, with minimal effort

on the part of the analyst.

The principal means for doing this is with default mechanisms.

Unspecified data types should default to a text string. Unspecified

functions need a variety of options but at least should cause some

output activity. Unspecified data instances should use defaults

associated with the data type. All of this is most easily

accomplished by having a library of default modules available to the

user: generate random numbers within an output type; go to the

screen for guidance; pick randomly among the outputs available; etc.

This is an illustrative case of how a standard set of library modules

is an important component of a prototyping environment.

5.3.1.3 Generic Modules.

A library of reusable modules will have many generics included

(generic in an Ada sense of being tolerant of variation of in/out data

types). In Ada these are mostly specialized (instantiated) at compile

time, but when an interpreter is being used there is no prior

opportunity to specialize them. Therefore the interpreter must

provide facilities for special treatment of generics.
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Two alternatives are being evaluated. First, the interpreter might

interrupt execution long enough to do a fast compile of the generic,

knowing that it would need to be done only once per function (not each

time the function is called). Second, the type information for the

execution data would be available to the generic module so that it

could interpret this data at runtime, but this means the interpretable

version of a given generic module would be more difficult to write

%than the translatable version.

5.3.1.4 Operation Sequencing.

Since PSDL is not a procedural language, its sequence of executions

S must be inferred from precedence relationships. Unlike functional

languages, it tolerates cycles and a variable number of output

messages from a function's execution. The result is that some

S analysis of the PSDL graph is needed prior to interpretation# to

determine relative priority of executions. Also the interpreter uses

an internal queue of pending processes to handle the dynamic aspects

of scheduling. While simpler methods might be used for many PSDL

graphs, the interpreter has no prior knowledge of when some function.
• "may create multiple output messages, so the most general sequencing

methods are used at all times.

The execution of a pre-execution analysis on a graph (called static

analysis) occurs the first time a new graph is encountered (but not

upon later re-entry to the graph). We are assuming that individual

graphs will be small enough (say a dozen nodes) so that the static

analysis step does not interfere with the performance of the

interpreter.

5.3.1.5 Interpretation Performance.

. ; While an interpreter is not expected to run in real time, its

performance must not be so poor that it taxes the patience of the

observers. There is a reasonable prospect that the PSDL prototype

interpreter will not be unreasonably slow because of the tendency in

. . most systems for the time consuming computations (e.g. FFT's, matrix

" : inversions, compiles, etc.) to be performed inside existing optimized
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modules. The interpreter serves mostly to invoke those modules, and

so represents a small percentage of overall execution.

When there are exceptions to that, performance can be improved by

translating an internal frequently-used graph into compiled form

either automatically or manually. A principal candidate for hand

coding will be data storage objects which perform frequent updates and

were directly coded in PSDL. If these objects perform their own space

management they can save some unnecessary data copying, but this

requires some design effort that is not generally needed.

5.3.2 Prototype Experimentation

When the analyst is presenting prototype results to a mission user, often

with on-line displays, a sequence of modifications to the prototype are

carried out in the course of fixing errors and trying alternative

specifications. There are two aspects of interest in this: display of

prototype results, and management of specification changes.

5.3.2.1 Displaying Prototype Results.

Effective experimental procedure will require doing more than just

simulating a target system's functionality. It will often require

making visible the internal results which are normally hidden, so that

observers can better understand system behavior. For example,

internal database contents, communications-line traffic, and overall

system state are often of interest. Principally, this is a matter of

experimental technique rather than a specific requirement on

prototyping facilities, so there is no explicit support for this in

PSDL. However, the library of reusable modules needs several

capabilities that the analyst can insert for display purposes.

5.3.2.2 Specification Changes.

A prototype must be built to be changed. The employment of reusable

modules almost automatically ensures some adaptability, because those

modules are built for the explicit reason of being flexibly used. The

support needed from the prototyping system is assurance that changes

are easy to make and to manage.
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Making changes usually involves modifying functions and data types.

Changing functions often is done by plugging an alternative

implementation into one position of a graph without otherwise

modifying the graph. This concern helps shape the database

representation of a graph and its relationship to components, so that

few user actions are required to change between components. Changing

data types should also be straightforward, but is complicated by the

need to change the functions (methods) that interpret those types,

.' .when those functions are not generic. An implementation goal is to
' 9permit substitution of one type data object for another with a small

number of changes. This is difficult in the case of heavily shared

S. "objects, such as a database, which are referenced in many places

throughout a hierarchy of graphs.

Managing changes requires the ability to recover from undesirable

."~ changes. This is principally a database versioning and auditing

-. ' problem, but requires the ability for the user to name and retrieve

9Z< partially edited versions of a specification.

..With these editing and versioning capabilities, the PSDL/SBMS system
can be viewed as a graphically-controlled configuration management

system which permits the rapid assembly of modules into an alternative

prototype for experimentation.

-w".'

5.4 User Interface of Tools

The exact characteristics of a user interface such as this are very pliable,

and are least subject to advanced specification since they depend on human

9' reactions rather than computer science theory.

Our objective in implementing this system is to fully utilize the emerging

technologies for letting the user make decisions by selection from options

F -. available, rather than requiring the typing of a command. This is usually

faster, and generally eliminates the need for a "help" facility as it is

commonly implemented. Of course the major problem in this strategy is to

not give the user unnecessary (at that time) options which require multiple

choices to do predictable things.
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A second strategic aspect of the user interface is the need to display

complex information without cluttering the display. The general solution is

to utilize the rapid interactivity of modern workstations to let the user

chose alternative views of a displayed object. In PSDL terms this implies

the need to switch rapidly between, say, text and graph descriptions of a

component.

A third strategic objective for user support is the ability to switch

rapidly between tools used for manipulating a displayed object. For PSDL

this means switching between the editor, browser, and interpreter without

changing the set of objects on the screen. This essentially implies that

tool switching is nothing more than putting a different population of

options in the pop-up menus shown the user. This requires an effective data

management system to preserve the system state across tool invocations.

The facilities needed for the specific PSDL tools are discussed within this

framework.

5.4.1 Editor Interface
To create a PSDL specification, as a hierarchy of graphs, it is necessary

to view and edit a variety of data elements: text descriptions, graph

components and connections, formal to actual bindings, data types, and

data values. These require the usual set of add/delete/copy/move

capabilities. Each type of data requires a little different set of

capabilities. One of the major costs in building such a system is the

provision to add a specialized editing facility for each class of object.

A particular concern for a common type of reusable module, code

generators, is the need for a specialized interface for each one.

Typical generators are in three classes: screen format definitions,

parsers (e.g. YACC) and expression evaluators. These take user inputs

and generate a module suitable for later execution, and each is

complicated enough to require specialized user interface support.

A particular concern in the editing process is the definition of a

hierarchy of graphs. That is, when a graph is being displayed and a

component graph is also desired, what is the mechanism for juxtaposing

them? Since there is no simple answer to this question, the solution is
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to provide the user with an extensive windowing capability for shaping

the display to the character of the graphs being observed. This involves

opening/moving/growing/panning/ closing windows.

a ." Another concern in the editing process is to minimize the number of user

actions necessary to construct a given image. This is best done by

anticipating what the user will do next after a given action. For

# example, after a user has inserted a component in a graph, will the next

set of actions concern connecting that component to other components or
- will they deal with further defining the details of that component? In

this example either sequence might happen, so a user interface that

g favors one sequence over the other will cause dissatisfaction. The

solution to these problems is a lot of experimentation, which is one

reason why we build prototypes.

>. 5.4.2 Interpreter Interface

During execution of the interpreter the user wishes to see an animation

of the activities as they move from graph to graph. This requires

facilities to view activations, see intermediate results, set up an

execution, and control the execution.

Dynamic Views During Interpretation.

As each function is executed on a graph its corresponding bubble can

be highlighted and, if appropriate* its internal graph opened up to

m '. ~show execution. Some types of debugging favor an approach where every
* .graph is opened as it is executed so the program progress is shown by

i graphs flashing on and off the screen. Alternatively, the user wishes

to focus on a certain graph and to view activity only as it is seen in

a that graph.

In addition to watching activations, the user will want to observe

certain data conditions. This can be done by setting a "tracepoint"

on an arc, which displays each data item traversing that arc. Open

issues exist in where to position the data display and how to best

display complex data structures.
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Static Views During Interpretation.

When interpreter execution stops for some reason, usually at a break

point, the user may wish to view many aspects of the program state and

perhaps to alter state data. The full power of the browser and

editors should be available at this point for looking at data and

graphs, and modifying parameters, data, and graphs. Of course

continued execution of the interpreter after modifications may not be

coherent, in which case the user would have to restart interpretation

from the beginning.

Interpreter Set Up.

The interpreter can be used to execute any PSDL component, but certain

adjustments need to be made initially for successful execution.

First, input data values are needed to stimulate the system. Second,

it is useful to set breakpoints (to stop operation), watchpoints (to

conditionally stop operation), and trace points (to display a data

stream) at selected points in the graph or its components. Third, if

a prolonged execution is anticipated then the session should be named

so that it can be restarted later at various times in the course of

experimentation.

Interpreter Execution Control

As the interpreter is executing, the user needs certain controls:

start, stop, single-step, faster, and slower. The speed controls

refer to the size of delay inserted for each function executed to make

the animation understandable to the user. All other control can be

exercised by the user when the execution is stopped, and so do not

need dynamic controls.

5.5 Human Interface Summary

The discussion here has focused primarily on support for the analyst in

constructing and running the prototype, as opposed to end-user viewing of

results. The end-user view depends on the skill of the analyst, but the

analyst's productivity depends on the skill of the prototyping system

developers.
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Many aspects of this discussion were given in the form of requirements

for necessary features. Sometimes it is obvious how such features might

be implemented, and other times it is not clear. This is characteristic

'... of user interface specifications. The actual functionality and format of

presentation in the delivered system requires experimentation under any

circumstances, because human reactions are difficult to predict.

Fortunately, these aspects of a system design are often flexible and can

be tuned. That is why prototyping has value.

* S.
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6. Conclusions

While this initial effort was only intended to create a design for PSDL, SBMS,

and support tools, it is reasonable to evaluate the system status at this

point. We believe there has been enough success in attacking each of the major

challenges confronting prototyping to be optimistic that an effective system

can be developed. However open issues remain in each area as to whether or not

people will really find the proposed facilities operationally useful. Only

experimentation will answer that question. In addition, a PSDL environment

needs to be extended to address design aspects (e.g. performance) of the target

system, in order to be a widely effective tool.

6.1 Successes

The major challenges facing this prototyping facilities development effort

are 1) providing an effective environment for reuse of standardized code

modules, 2) developing an executable interconnection language for simplified

specification of a prototype, and 3) bringing the tools of hierarchical

structuring and graphical programming into the user's hands.

6.1.1 Support of Reuse

The principal support of reuse is a) SBMS facilities for finding modules

plus associated data which facilitates understanding those modules, and

b) an interpretation capability which helps understanding of how a module

fits into a given problem. The SBMS aspect was anticipated, but the

realization gained during this effort was that large amounts of

Deripheral information about a module, such as test sets and

illustrations of prior use, can be necessary selection aids. The value

of the interpretation facility is yet to be tested, but it appears

promising, if the user finds it easy to set up and interpret execution

experiments.

6.1.2 System Descriptions

Configurations of components are assembled using PSDL. The language

serves to describe the interaction of those components in a simple

semantics which is executable. We feel that a language has been defined I
which in fact eliminates many control and structuring decisions, and that

this is an effective general-purpose language. Whether or not its use

provides a substantial savings in effort on the part of the prototype
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specifier is open to experimentation, but we feel there are good

prospects for that to be the case when the proper support tools are in

place.

Our experience with doing example programs in PSDL gives some further

insights about its strengths. We might compare it to a configuration

management capability (such as "Make" in Unix systems); PSDL is more than

that because it describes the semantics of interactions of the components

being brought together. PSDL "externalizes" the control structure so

that the individual components need not be aware of the overall program

logic. We might compare PSDL to functional languages which provide a

control-free description of a system (such as FP); PSDL imposes less

serialization on the description and so simplifies the programming effort

required for applications where there is natural asynchrony or

concurrency. We might compare PSDL to dataflow or other diagrams used in

design specification and documentation; PSDL has less flexibility in

terms of displaying multiple dimensions of a system, but its

W executability means that the specification involved can be animated and

checked.

! 6.1.3 User Interface

The opportunity to use interactive graphics for dealing with complexity

in design information is becoming an economical reality, but the

techniques for doing that are still evolving. We have developed a

graphical syntax for our structures and have made hierarchical

decomposition an effective tool. These techniques serve to achieve

. higher effective bandwidth to the user. Our hierarchical structuring, in

contrast with that available in block-structured languages, in that each

" ,.. level can be given a useful abstraction function, so that the user can

read and program each level as a program in itself.

Of course the overall user interface will evolve significantly with

future use, but the promise for high effective bandwidth seems

achievable.

.. 4
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6.2 Open Issues

As we gain experience in using and presenting PSDL, several concerns are

raised which can only be resolved by usage experience. These occur in the

same areas as the technical challenges: reuse, languagep user interface.

6.2.1 Reuse of Components

Prior attempts at software reusability have not always been wildly

successful. This is due in part because existing software is not written

for reuse and because potential users have trouble learning about

candidates for reuse. The hope for improved reuse in a prototyping

system occurs in several forms. First, functional level components have

fewer design idiosyncrasies to disqualify them from reuse. Second,

components in a prototype will be built with standard interfaces and

within a common data-type dictionary so the probability of their plugging

together is increased. Third, the use of generic facilities in Ada

permits modules to be more tolerant of data types, and so may have wider

applicability. Fourth, components written in PSDL will be relatively

easier to modify because they have not been optimized for high

performance and so exist in a more easily understood form.

Despite these improvements, effective reuse may prove difficult to

achieve outside specialized application domains. Operational experience

will be necessary to evaluate this.

6.2.2 Description Language

The desire to describe systems at the functional specification level is

adventuresome because it has not happened before. System analysts are

accustomed to working at that level of description, but not to the degree

of precision necessary for executability. Programmers are not accustomed

to dealing with abstract functionality separated from implementation

concerns, and they may require a significant reorientation to become

effective users of PSDL. Thus, while functional specification has many

attractions, it may be difficult to get people to use it, particularly

when it is unfamiliar.
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6.2.3 Graphical Syntax

gIs programming in a graphical syntax more or less efficient than in a

textual syntax? The experience with graphical interfaces in some other

application areas (e.g. MacIntosh programs) indicates that graphics is

good for beginners but can get in the way of experienced users. That

depends on the type of application and on the degree of development of

S-the user interface, namely how well the user can bypass non-productive

actions. Again, usage is necessary to gain insight into these issues.

6.3 Extensions: Design Prototyping

A very desirable prototyping capability is to evaluate performance

properties of a system design, and that is a very natural next step after

functional prototyping. To accomplish this, PSDL would be extended to

describe system concurrency, and transformations would be added through

which the design decisions could be modified without changing functionality.

;. Other capabilities would be needed for optimizing data management and inter-

process synchronization.

PSDL as it is now defined appears to be a good vehicle to support these

extensions and some of these capabilities may be added with minimal effort.

" International Software Systems expects to continue to develop prototyping

-_ concepts and associated support tools, so the work performed under this
-%4

contract should prove of value in later contract efforts.
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8. Contract Summary and Related Efforts

S 8.1 Financial Summary

STARS funding for this effort, for the period June 1985 through March 1986

was $148,661.

8.2 Schedule

This work was intended as the first phase of a multi-year effort. It was

originally scheduled for June 1985 though December 1985. Due to delay in

funding approval for the continuation work, the first phase work was

stretched out into March of 1986 in the hopes of providing continuity with

the subsequent work. When the decision not to fund the continuation was

made in late March 1986, we faced the choice of filing a final report

describing a fragmentary study or delaying the report in order to make it a

self-sufficient document. The latter approach was used, so this document is

quite late because much of the work on it has been done outside contracted

hours.

8.3 Other Related Efforts

Concurrent effort has also been carried out on a Rome Air Development Center

contract #F30602-85-C-0129, "VHLL System Prototyping Tool". This contract

entails delivery of an operational prototype of a prototyping system,

utilizing many of the design features identified in the STARS contract. The

RADC work is being focused on command and control applications.

IT.
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Appendix

A.1 PSDL Example

In order to illustrate the use of PSDL, a standard example is developed here.

The example is Booch's Environment Monitor Problem [2] in which sensor signal

values are read, logged, and compared to preset limits. This example shows

some elements of real-time programming, and is used by Booch to illustrate an

object-oriented programming approach in Ada.

The intent of the illustration here is to show the style in which PSDL might be

used. Unfortunately, we have not yet done a good Job of figuring out how to

present PSDL structures on paper, since the language is oriented toward

electronic interactive presentation. Normal usage of PSDL would employ two or

more levels of description, where a top-level graph has components which are

defined by lower-level graphs. Electronically it is easy to browse through the

upper level graph and look at subgraphs, text descriptions, data types, etc.

On paper we have the choice of having too many disconnected diagrams, or of

having overly cluttered diagrams, or of omitting some useful information. The

compromise need here is to try to express the whole application in one level of

diagram, with only primitive elements separated, and to omit much of the

information which defines actual application details. The resulting diagram is

not at this point usefully executable because data type information is missing;

this is straight forward detail except for the limits check function, where

expressing constraints require a little thought.

Included with this Monitor Problem example are descriptions of the basic

library modules which would be needed to make the system executable. Most of

these are standard reusable modules which would be readily available Three of

2 them are application-specific, involving access to specialized external

devices, and that code would have to be written by the prototype developer.

This is indicative of the general case that a prototype run in a specialized

environment will need custom interfacing code.
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A.2 Problem Description

The diagram in Figure A-i has three major data flows, which are horizontal. At

the top is the mechanism for end-users to adjust parameters in the monitoring

process. The user has a command interface by which sensors can be

enabled/disabled, limits set, and values selectively logged. After each

command a confirmation is printed back on the terminal. The user interface,

with error checking and prompts, is encapsulated in a standard module. The

middle row shows a periodic reporting mechanism, by which sensor status is

logged. The bottom row shows a mechanism which brings sensor values into the

internal data structures periodically. The period for doing this is

unspecified in the requirement, but would depend on how frequently the limits

should be checked. The apparatus in the lower right is a time-out mechanism

which causes as alarm if a sensor fails to respond in a given time period. (We

believe that the time-out does not fit well in this problem, but was grafted on

to illustrate the concept.)

What is not presented in this formulation is the data structure of the stored

data, the command set, or the confirmation texts. Also not shown are the

constraints expressions which make up the limits check. These would be

necessary to understand the details of the system but not the overall logic

flow.A!

This formulation matches Booch's requirements [2], which are ambiguous. It

does not match Booch's code in two aspects which we think are improvements: 1)

the time-out check is made a little more useful, and 2) the sensor scanning

function is explicit in PSDL, whereas it was an implicit use of idle time in

Booch's code. The latter change marks one distinction between a functional

specification and an implementation.

A.3 Analysis

It is true that reading this PSDL diagram does not make the system

functionality immediately obvious. However, after a little study, the overall

system logic becomes much clearer than it does reading Booch's code (which is

good code but still obscure). Most evident is that the interaction between

w subsystems is much clearer in the PSDL form. When code is automatically
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generated from this PSDL graph, however, it will likely be less efficient than

Booc h ' s.

Note that this example illustrates two features which we find valuable in any

specification language. First, the intermixture of dataflow and object

structures permits the viewing of simple transactions (data flows) and also the

interactions of different types of transactions (via objects). Second, all of

* the reusable components used here are oeneral-purposed in character, and so are

applicable to a wide range of applications.
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Reusable Modules
Methods Dt yg

M legal commands write:-
,F listen:-

listen/' gt ommand legal commands:array of
usercommand

: v ,,- usercommand: [op: integer;
:, text %array of field]

write displa field: numberltext
text: character string

-- ,)USER INTERFACE OBJECT

Specification: A text style user interface is provided; in a listen activity, every legal
command typed by the user is output; text is displayed back to the user.

131 DB: array of entry
'pI

"hng u t new new entry: entry

e entry: [key: integer;
array of field]

-' kfield: anything

read enr
change: [key: integer;

fieldname: integer;
e tvalue : anythingj

DATA STORAGE OBJECT
Specification: An array of records is updated, added-to, and read from in convertional ways.

delay count count: [elapsedtime: integer;

spc on/off: boolean]

time n alarm delay spec: integer

time:

stop:

stop start:

alarm:

start

start. TIME OUT OBJECT

Specification: When the timer is started, it produces an alarm after the delay unless first reset.

57



continuation of resuable modules
dltime:

delay constant delay spec: integer
econstant: 

X : anything

tiimr trigger: X

TIMER MODULE
Specification: Every [delay spec.) time units a trigger message is sent whose
contents equal the constant provided.

." input: message

path Ipath 1: message

input Cpath 2: message
.. h 2

message: [op: integer; anthing]

SELECTION MODULE
'Specification: An output path is selected based on the first field of the input:
- outputs are mutually exclusive.

list: array of item

list Re t iitem: anything

REPEAT MODULE
Specification: When a list of items is received, each item is sent out as a separate
message. This performs the function of interation in many cases.

expression IN: anything

OUT: anything

IN OUT expression: character string

EXPRESSION MODULE

Specification: This module interpretively executes an arbitrary arithmetic expression
to calculate output values as a function of input values.
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Application - Specific Modules
(encapsulate outside events)

record 10 done done:

record: anything

LOG THE STATUS

Specification: Has access to an external file, and writes the input data onto the file.

- Se

e: [key; integer

key: integer

READ SENSOR VALUE
Specification: Has access to externally derived sensor values, and reads them.

name

f Alar

SET OFF ALARM
Specification: Has access to external alarms, and activates the alarm designated by name.
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